Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
JAMA Netw Open ; 6(6): e2316642, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-20236202

ABSTRACT

Importance: The COVID-19 pandemic has led to a reduction in routine in-person medical care; however, it is unknown whether there have been any changes in visit rates among patients with hematologic neoplasms. Objective: To examine associations between the COVID-19 pandemic and in-person visits and telemedicine use among patients undergoing active treatment for hematologic neoplasms. Design, Setting, and Participants: Data for this retrospective observational cohort study were obtained from a nationwide electronic health record-derived, deidentified database. Data for patients with hematologic neoplasms who had received at least 1 systemic line of therapy between March 1, 2016, and February 28, 2021, were included. Treatments were categorized into 3 types: oral therapy, outpatient infusions, and inpatient infusions. The data cutoff date was April 30, 2021, when study analyses were conducted. Main Outcomes and Measures: Monthly visit rates were calculated as the number of documented visits (telemedicine or in-person) per active patient per 30-day period. We used time-series forecasting methods on prepandemic data (March 2016 to February 2020) to estimate expected rates between March 1, 2020, and February 28, 2021 (if the pandemic had not occurred). Results: This study included data for 24 261 patients, with a median age of 68 years (IQR, 60-75 years). A total of 6737 patients received oral therapy, 15 314 received outpatient infusions, and 8316 received inpatient infusions. More than half of patients were men (14 370 [58%]) and non-Hispanic White (16 309 [66%]). Early pandemic months (March to May 2020) demonstrated a significant 21% reduction (95% prediction interval [PI], 12%-27%) in in-person visit rates averaged across oral therapy and outpatient infusions. Reductions in in-person visit rates were also significant for all treatment types for multiple myeloma (oral therapy: 29% reduction; 95% PI, 21%-36%; P = .001; outpatient infusions: 11% reduction; 95% PI, 4%-17%; P = .002; inpatient infusions: 55% reduction; 95% PI, 27%-67%; P = .005), for oral therapy for chronic lymphocytic leukemia (28% reduction; 95% PI, 12%-39%; P = .003), and for outpatient infusions for mantle cell lymphoma (38% reduction; 95% PI, 6%-54%; P = .003) and chronic lymphocytic leukemia (20% reduction; 95% PI, 6%-31%; P = .002). Telemedicine visit rates were highest for patients receiving oral therapy, with greater use in the early pandemic months and a subsequent decrease in later months. Conclusions and Relevance: In this cohort study of patients with hematologic neoplasms, documented in-person visit rates for those receiving oral therapy and outpatient infusions significantly decreased during the early pandemic months but returned to close to projected rates in the later half of 2020. There were no statistically significant reductions in the overall in-person visit rate for patients receiving inpatient infusions. There was higher telemedicine use in the early pandemic months, followed by a decline, but use was persistent in the later half of 2020. Further studies are needed to ascertain associations between the COVID-19 pandemic and subsequent cancer outcomes and the evolution of telemedicine use for care delivery.


Subject(s)
COVID-19 , Hematologic Neoplasms , Leukemia, Lymphocytic, Chronic, B-Cell , Male , Female , Humans , Adult , Middle Aged , Aged , Pandemics , Cohort Studies , Retrospective Studies , COVID-19/epidemiology , Outpatients , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/therapy
3.
J Natl Cancer Inst ; 114(4): 571-578, 2022 04 11.
Article in English | MEDLINE | ID: covidwho-1566036

ABSTRACT

BACKGROUND: The COVID-19 pandemic has led to delays in patients seeking care for life-threatening conditions; however, its impact on treatment patterns for patients with metastatic cancer is unknown. We assessed the COVID-19 pandemic's impact on time to treatment initiation (TTI) and treatment selection for patients newly diagnosed with metastatic solid cancer. METHODS: We used an electronic health record-derived longitudinal database curated via technology-enabled abstraction to identify 14 136 US patients newly diagnosed with de novo or recurrent metastatic solid cancer between January 1 and July 31 in 2019 or 2020. Patients received care at approximately 280 predominantly community-based oncology practices. Controlled interrupted time series analyses assessed the impact of the COVID-19 pandemic period (April-July 2020) on TTI, defined as the number of days from metastatic diagnosis to receipt of first-line systemic therapy, and use of myelosuppressive therapy. RESULTS: The adjusted probability of treatment within 30 days of diagnosis was similar across periods (January-March 2019 = 41.7%, 95% confidence interval [CI] = 32.2% to 51.1%; April-July 2019 = 42.6%, 95% CI = 32.4% to 52.7%; January-March 2020 = 44.5%, 95% CI = 30.4% to 58.6%; April-July 2020 = 46.8%, 95% CI= 34.6% to 59.0%; adjusted percentage-point difference-in-differences = 1.4%, 95% CI = -2.7% to 5.5%). Among 5962 patients who received first-line systemic therapy, there was no association between the pandemic period and use of myelosuppressive therapy (adjusted percentage-point difference-in-differences = 1.6%, 95% CI = -2.6% to 5.8%). There was no meaningful effect modification by cancer type, race, or age. CONCLUSIONS: Despite known pandemic-related delays in surveillance and diagnosis, the COVID-19 pandemic did not affect TTI or treatment selection for patients with metastatic solid cancers.


Subject(s)
COVID-19 , Neoplasms, Second Primary , COVID-19/epidemiology , Humans , Neoplasm Recurrence, Local/epidemiology , Neoplasms, Second Primary/epidemiology , Pandemics , Time-to-Treatment , United States/epidemiology
5.
Lancet Haematol ; 7(8): e575-e582, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-624336

ABSTRACT

BACKGROUND: An important feature of severe acute respiratory syndrome coronavirus 2 pathogenesis is COVID-19-associated coagulopathy, characterised by increased thrombotic and microvascular complications. Previous studies have suggested a role for endothelial cell injury in COVID-19-associated coagulopathy. To determine whether endotheliopathy is involved in COVID-19-associated coagulopathy pathogenesis, we assessed markers of endothelial cell and platelet activation in critically and non-critically ill patients admitted to the hospital with COVID-19. METHODS: In this single-centre cross-sectional study, hospitalised adult (≥18 years) patients with laboratory-confirmed COVID-19 were identified in the medical intensive care unit (ICU) or a specialised non-ICU COVID-19 floor in our hospital. Asymptomatic, non-hospitalised controls were recruited as a comparator group for biomarkers that did not have a reference range. We assessed markers of endothelial cell and platelet activation, including von Willebrand Factor (VWF) antigen, soluble thrombomodulin, soluble P-selectin, and soluble CD40 ligand, as well as coagulation factors, endogenous anticoagulants, and fibrinolytic enzymes. We compared the level of each marker in ICU patients, non-ICU patients, and controls, where applicable. We assessed correlations between these laboratory results with clinical outcomes, including hospital discharge and mortality. Kaplan-Meier analysis was used to further explore the association between biochemical markers and survival. FINDINGS: 68 patients with COVID-19 were included in the study from April 13 to April 24, 2020, including 48 ICU and 20 non-ICU patients, as well as 13 non-hospitalised, asymptomatic controls. Markers of endothelial cell and platelet activation were significantly elevated in ICU patients compared with non-ICU patients, including VWF antigen (mean 565% [SD 199] in ICU patients vs 278% [133] in non-ICU patients; p<0·0001) and soluble P-selectin (15·9 ng/mL [4·8] vs 11·2 ng/mL [3·1]; p=0·0014). VWF antigen concentrations were also elevated above the normal range in 16 (80%) of 20 non-ICU patients. We found mortality to be significantly correlated with VWF antigen (r = 0·38; p=0·0022) and soluble thrombomodulin (r = 0·38; p=0·0078) among all patients. In all patients, soluble thrombomodulin concentrations greater than 3·26 ng/mL were associated with lower rates of hospital discharge (22 [88%] of 25 patients with low concentrations vs 13 [52%] of 25 patients with high concentrations; p=0·0050) and lower likelihood of survival on Kaplan-Meier analysis (hazard ratio 5·9, 95% CI 1·9-18·4; p=0·0087). INTERPRETATION: Our findings show that endotheliopathy is present in COVID-19 and is likely to be associated with critical illness and death. Early identification of endotheliopathy and strategies to mitigate its progression might improve outcomes in COVID-19. FUNDING: This work was supported by a gift donation from Jack Levin to the Benign Hematology programme at Yale, and the National Institutes of Health.


Subject(s)
Betacoronavirus/pathogenicity , Blood Coagulation Disorders/pathology , Coronavirus Infections/complications , Endothelium, Vascular/pathology , Pneumonia, Viral/complications , Vascular Diseases/pathology , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/metabolism , COVID-19 , Coronavirus Infections/virology , Critical Illness , Cross-Sectional Studies , Endothelium, Vascular/metabolism , Female , Follow-Up Studies , Humans , Intensive Care Units , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , Prognosis , SARS-CoV-2 , Vascular Diseases/etiology , Vascular Diseases/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL